

- ± 0.04% High Accuracy
- ±0.15% of URL Stability -Guarantee for 12 Years
- 120:1 Rangeability
- Non-volatile Totalizer
- Tank Linearization
- 100 ms Total Response Time
- PID Control Capability
- Bi-directional Flow Measurement
- Advanced Diagnostics
- Largest Library of Function
- Instantiable Function Blocks
- Supported by DD, EDDL and FDT/ DTM
- Three Technology Options

301 - 302 - 303

PRESSURE TRANSMITTER

FOR PRESSURE, LEVEL AND FLOW APPLICATIONS

CE

SP.

Features

- ± 0.04% high performance option;
- ± 0.15% of URL stability;
- 120:1 rangeability;
- Span as small as 50 Pa (0.2 inH₂O) up to a range limit of 40 MPa (5800 psi);
- Up to 52 MPa static pressure (7500 psi);
- Direct digital capacitance sensing (no A/D conversion);
- True non-interactive zero and span;
- Local zero and span adjustment;
- Remote calibration and parameterization;
- Transfer functions: linear, \sqrt{x} , $\sqrt{x^3}$ e $\sqrt{x^5}$;
- Tank linearization;
- Alphanumerical LCD indication;
- Small and lightweight;
- Explosion proof and weather proof housing approved (IP66/68 or IP66/68W);
- Intrinsically safe certification;
- Signal simulation for loop tests;
- Non-volatile flow totalization;
- Configurable user unit;
- Configurable local adjustment;
- EMC (Electromagnetic Compatibility) according to IEC61326-1:2006, IEC61326-2-3:2006, IEC61000-6-4:2006, IEC61000-6-2:2005;
- Write protection function;
- Three technology options: HART[®], Foundation[™] fieldbus, PROFIBUS PA.

HART[®] - 4 to 20 mA

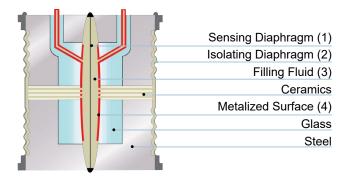
- Update output current in 100 ms with 0.75 µA resolution;
- Improved performance due to dedicated math co-processor;
- Multidrop operation mode;
- PID control function;
- Supports DTM and EDDL;
- Bi-directional flow measurement;
- With FMEDA analysis and MTBF of 244 years.

Foundation[™] fieldbus

- 17 different types of function blocks for control strategies and advanced diagnostics;
- Up to 20 function blocks;
- Execution of up to 29 external links;
- 12 mA consumption;
- Dynamic block instantiation improves interchangeability;
- Fieldbus Foundation[™] registered and ITK approved;
- MVC (Multivariable Container) enabled;
- MTBF of 186 years.

PROFIBUS PA

- 12 mA consumption;
- Function blocks for analog input and totalization;
- Integrated to Smar ProfibusView or Simatic PDM;
- Supports DTM and EDDL;
- Profile 3.0 improves interchangeability;
- MTBF of 186 years.



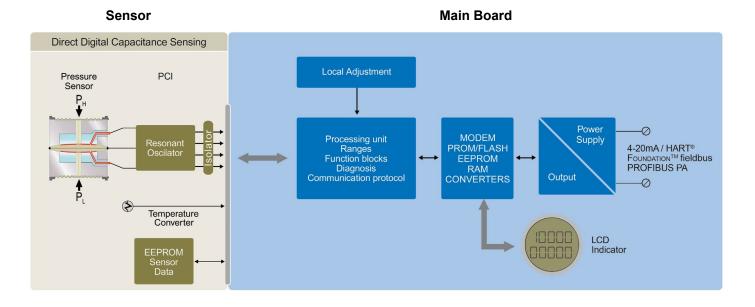
LD300 Series offers:

- ± 0.04% accuracy for high performance option;
- ± 0.15% of URL stability guarantee for 12 Years;
- 120:1 rangeability;
- Compact and lightweight; Multiple Protocol Options.

LD300 Series uses the field-proven technique of capacitance cell sensor measurement.

The sensor is shown in the picture above. The sensing diaphragm (1) is at the cell center. The diaphragm deflects as a result of the difference between the pressures applied to the left and right sides of the sensor. Pressure is directly applied to the isolating diaphragms (2), which provide resistance against process fluid corrosion. The pressure is transmitted to the sensing diaphragm through the filling fluid (3).

The sensing diaphragm is a moving capacitor plate while the two metallized surfaces **(4)** are fixed plates. The sensing diaphragm deflection results in capacitance variations between the moving and fixed plates.



The electronic resonance circuit reads capacitance variation between the moving and fixed plates. The CPU conditions the measurement and communicates according to protocol. As there is no A/D conversion, errors and drifts during conversions are eliminated. A temperature sensor provides temperature compensations, which combined with the sensor precision, results in high accuracy and rangeability for the **LD300 Series**.

The process variable, as well as monitoring and diagnostics information, are provided by digital communication protocol.

The available protocol options are: HART[®], FOUNDATION[™] fieldbus and PROFIBUS PA.

These protocols are easily changed by either replacing the internal electronic board or downloading the firmware. A HART[®] transmitter can be changed into a FOUNDATION[™] fieldbus / PROFIBUS PA device by replacing the internal card, and vice versa. A FOUNDATION[™] fieldbus device can be changed into a PROFIBUS PA device and vice versa, by simply downloading a new firmware.

smar

Differential Pressure - LD300D and LD300H

Pressure is applied to high and low sides and differential pressure is measured. High static pressure is supported by **LD300H** models.

Flow - LD300D and LD300H

The differential pressure is generated by a primary flow element and the square root function computes the flow measurement.

Absolute Pressure - LD300A

The pressure is measured at the high side of the transmitter and the low side is at zero absolute reference to a sealed chamber with vaccum.

Gage Pressure - LD300M

The pressure is measured at the high side of the transmitter and the low side is open to the atmosphere, providing true local atmospheric reference.

Level - LD300L

The transmitter has a flange mounted unit for direct installation on vessels. Extended diaphragms are also available. For closed tank low side can compensate for ullage pressure.

Remote Seals

SR301 is a remote seal designed for chemical and thermal isolation. **LD300 Series** can be assembled with separate diaphragm seals in either one or both sides of the sensor. SR301 options include: "T" Type Flanged (SR301T), Threaded (SR301R), Pancake (SR301P) where those three models with an optional flush connection, Sanitary (SR301S), Flanged with Extension (SR301E) and Pancake with Extension (SR301Q).

The flush connection enables deposits removal without disconnecting the seal.

- Typical applications for LD300 Series with remote seals:
- Corrosive process fluid;
- Suspended solids or viscous process fluid;
- Process fluids that may freeze or solidify;
- Process temperatures higher than supported by transmitters;
- Replaces impulse lines and condensate legs;
- Bubble system.

See the Smar SR301 Series catalog for further information regarding application and specification.

Sanitary Transmitter

LD300S Series are specially designed for food and other applications where sanitary connections are required. With threaded or "tri-clamp" connections, it allows for easy and quick maintenance and cleaning. Tri-clamp and other connections are compliant to 3A-7403 standard for food grade applications.

For further information, see the Smar SR301 Series Catalog.

Manifold Valves

Smar manifold valves provide all of the necessary safety for field maintenance of **LD300 Series** transmitters. Working at pressures up to 6,000 psi, they are easy to handle and lighter than others in the market. Pressure and leakage tests carried out in 100% of the valves, also for models mounted on the transmitter. For further information, please see the Smar Manifold Valves Catalog.

LD300 Series are available in three different technologies: HART[®] (**LD301**), FOUNDATION[™] fieldbus (**LD302**) and PROFIBUS PA (**LD303**).

These instruments can be configured with Smar software and other manufacturers' configuration tools.

Local adjustment is available in all **LD300 Series**. It is possible to configure zero and span, totalization, set point and other control functions using the magnetic screwdriver.

Smar has developed AssetView, which is a user-friendly Web Tool that can be accessed anywhere and anytime using an Internet browser. It is designed for management and diagnostics of field devices to ensure reactive, preventive, predictive and proactive maintenance.

HART[®] - LD301

LD301 (HART[®] protocol) can be configured by:

- Smar CONF401 for Windows;
- Smar DDCON100 for Windows;
- Smar HPC301 and HPC401 for several models of Palm;
- Other manufacturers' configuration tools based on DD (Device Description) or DTM (Device Type Manager), such as AMS[™], FieldCare[™], PACTware[™], HHT275 and HHT375, PRM Device Viewer.

For **LD301** management and diagnostics, AssetView ensures continuous information monitoring.

Universal HART® Configuration Software

HPC401

Foundation[™] fieldbus - LD302

LD302 utilizes the FOUNDATION[™] fieldbus H1 protocol, an open technology that allows any H1 enabled configuration tool to configure this device.

Syscon302 (System Configuration Tool) is a software tool used to configure, maintain and operate the field devices. Syscon offers efficient and friendly interaction with the user, using Windows.

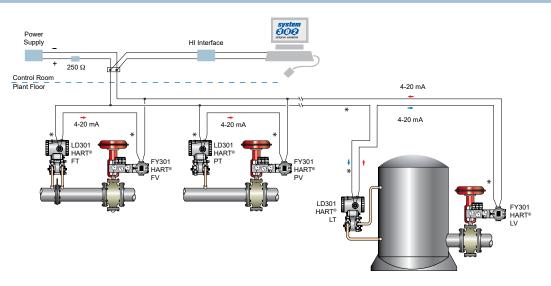
Configuration tools such as AMSTM, FieldCareTM and HHT375 can configure **LD302** devices. DD (Device Description) and CF (Capability File) files can be downloaded at either the Smar or Fieldbus FoundationTM website.

LD302 supports complex strategies configurations due to the high capacity and variety of dynamic instantiable function blocks.

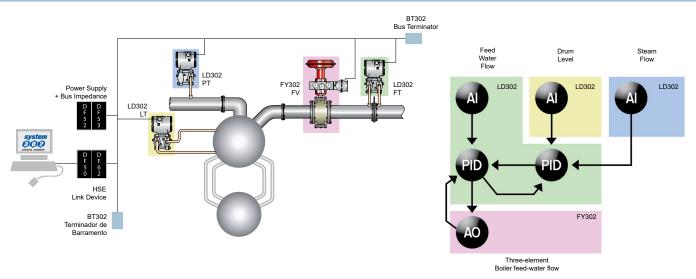
Seventeen different types of function blocks are supported, and up to 20 function blocks can be running simultaneously.

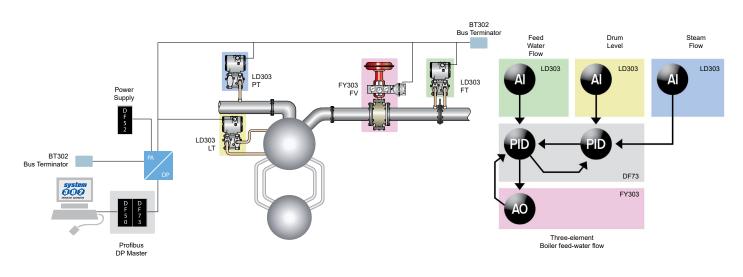
Maintenance procedures with AssetView diagnostics and status information from FOUNDATION[™] fieldbus result in a safer plant with higher availability.

PROFIBUS PA - LD303


LD303 (PROFIBUS PA protocol) can be configured using Smar ProfibusView or Simatic PDM and by the FDT (Field Device Tool) and DTM (Device Type Manager) concept tools, such as FieldCare[™] and PACTware[™]. It can also be integrated by any PROFIBUS System using the GSD file.

PROFIBUS PA also has quality and diagnostic information, improving plant management and maintenance. Conforms to profile 3.0.


Encloses takes of the electronic Zoro point ence (link parallel) Indexess takes encloses: Encloses takes encloses enclo	FIRST IN FIELDBUS		Smar FIRST IN FIELDBUS	\$ LD303	and the second	
Hackwas falue of the electronic Hackwas falue activation Hackwas falue Hackwas falue Hackwas falue Hackwas falue Hackwas Hak	Cover/Upper Movi Analog Input Temperature Object		Analog Input	🎌 Calbration 🛛 🕀	👹 Diagnostic	⊞–Ø Genesal
Selfcatbration failed IDENT_NUMBER_Violation Ratic Settings Advanced Settings	Hardware failure of the electronic Hardware failure mechanics Hardware failure mechanics Hoto- temperature to hylo Ectoritor integrature to hylo Failure in measurement Device not initialized (No self-cableation) Device not initialized (No self-cableation)	oly failed (electrical, pneumatic) on not valid up (warmstart up) carried out. (coldstart up) carried out. ce required ation invalid	Set Alarm/Warning Limits Upper Limit Mann Upper Limit Warning Lower Limit Marning Lower Limit Marning Limit Hysteresis		*	Config Block Mode


HART® - LD301

FOUNDATION[™] fieldbus - LD302

PROFIBUS PA- LD303

smar

Functional Specifications

Process Fluid	Liquid, gas or steam.
Output and Communication Protocol	 HART[®]: Two-wire, 4-20 mA according to NAMUR NE43 specification, with superimposed digital communication (HART[®] Protocol). FOUNDATION[™] fieldbus and PROFIBUS PA: Digital only. Complies with IEC 61158-2:2000 (H1): 31.25 kbit/s voltage mode, bus powered.
Power Supply / Current Consumption	HART [®] : 12 to 45 Vdc. Transient Suppressor Vmax = 65 Vp; Differential mode - bi-directional; Low current leak and capacitance; meets the standards: IEEE61000-4-4 and IEEE61000-4-5; Less than 5 ns response time. FOUNDATION [™] fieldbus and PROFIBUS PA: Bus powered: 9 to 32 Vdc. Quiescent current consumption: 12 mA.
Indicator	4 ¹ / ₂ -digit numerical and 5-character alphanumerical LCD indicator (optional).
Hazardous Area Certifications	 HART[®], FOUNDATION[™] fieldbus and PROFIBUS PA: Intrinsically Safe (FM, CSA, NEMKO, EXAM, CEPEL, NEPSI), explosion proof (FM, CSA, NEMKO, CEPEL, NEPSI), dust ignition proof (FM) and non-incendive (FM). FOUNDATION[™] fieldbus and PROFIBUS PA: FISCO Field Device Ex ia IIC T4 FNICO Field Device Ex n1 IIC T4
European Directive Information	Authorized representative in European Community Smar Gmbh-Rheingaustrasse 9-55545 Bad Kreuzanach PED Directive (97/23/EC) - Pressure Equipment Directive This product is in compliance with the directive and it was designed and manufactured in accordance with sound engineering practice using several standards from ANSI, ASTM, DIN and JIS. EMC Directive (2004/108/EC) - Eletromagnetic Compatibility The EMC test was performed according to IEC standard: IEC61326-1:2006, IEC61326-2-3:2006, IEC61000-6-4:2006, IEC61000-6-2:2005. For use in environment only. Keep the shield insulated at the instrument side, connecting the other one to the ground if necessary to use shielded cable. ATEX Directive (94/9/EC) - Equipment and protective systems intended for use in potentially explosive atmospheres This product was certified according European Standards at NEMKO and EXAM (old DMT). The certified body for manufacturing quality assessment is EXAM (number 0158). LVD Directive 2006/95/EC - Electrical Equipment designed for use within certain voltage limits According the LVD directive Annex II the equipment under ATEX "Electrical equipment for use in an explosive atmosphere" directive are excluded from scope from this directive. The EC declarations of conformity for all applicable European directives for this product can be found at www.smar.com.
Zero and Span Adjustments	Noninteractive, via digital communication or local adjustment.
Failure Alarm (Diagnostics)	Detailed diagnostics through communication for all protocols. HART [®] : In case of sensor or circuit failure, the self diagnostics drives the output to 3.6 or 21.0 mA, according to the user's choice and NAMUR NE43 specification. FOUNDATION [™] fieldbus and PROFIBUS PA: For sensor circuit failures, events are generated and status is sent to link outputs. Detailed diagnostics are available in the contained parameters.

Temperature Limits	Ambient: Process: Storage: Digital Display	-40 a 85 -40 a 100 -40 a 85 0 a 85 -20 a 85 -25 a 100 -40 a 150 -40 a 100 -20 a 80 -40 a 85	9 °C (-40 5 °C (-40 5 °C (32 5 °C (-4 9 °C (-41 9 °C (-41 9 °C (-40 9 °C (-40 9 °C (-4	a 212 °F) a 185 °F) a 185 °F) a 185 °F) a 212 °F) a 302 °F) a 212 °F) a 176 °F)) (Silico (Inert (Inert (Inert (Viton (LD30	O'Ring)	e Oil) I and For	mblim Oil)	
Turn-on Time	Foundation™	Performs within specifications in less than 5 seconds after power is applied to the transmitter. FOUNDATION [™] fieldbus and PROFIBUS PA:								
Configuration	HART [®] : By digital con DDCON100 (fo and FDT/DTM Foundation™ Basic configura	Performs within specifications in less than 10 seconds after power is applied to the transmitter. HART®: By digital communication (HART® protocol) using the configuration software CONF401, DDCON100 (for windows), HPC301 or HPC401 (for Palm). It can also be configured using DD and FDT/DTM tools, and can be partially configured through local adjustment. FOUNDATION [™] fieldbus and PROFIBUS PA: Basic configuration may be done using the local adjustment magnetic tool if device is fitted with display. Complete configuration is possible using configuration tools.								
Volumetric Displacement	Less than 0.15	Less than 0.15 cm³ (0.01 in³)								
Overpressure and Static Pressure Limits (MWP – Maximum Working Pressure)	From 3.45 kPa abs. (0.5 psia)* to: 4600 psi (320 bar) for models H2 and H5 70 psi (5 bar) for range 0 5800 psi (400 bar) for range 5 1200 psi (80 bar) for range 1 7500 psi (520 bar) for range 6 2300 psi (160 bar) for ranges 2, 3 and 4 * except the LD301A model Flange Test Pressure (Burst Pressure): 68.95 MPa (10,000 psi) C63 certificate is available under request, for 480 bar static pressure and 380 bar overpressure. For classified areas, it must be observed maximum operation pressure according to the Explosion Proof Certificate according to the area. Overpressures above will not damage the transmitter, but a new calibration may be necessary. WARNING It is described here only the maximum pressures of the materials referenced in each rule, it can not be manufactured on request. Temperatures above 150 °C are not available in standard models. PRESSURES TABLE FOR SEAL AND LEVEL FLANGES DIN EN 1092-1 2008 STANDARD								he ary.	
	Material	Pressure	RT	Max 100	<mark>kimum T</mark> 150	emperat 200	ure Allov 250	wed 300	350	
	Group	Class		Мах	imum Pr	essure A		(bar)		
		PN 16	16	13.7	12.3	11.2	10.4	9,6	9.2	
	(050	PN 25	25	21.5	19.2	17.5	16.3	15.1	14.4	
	10E0 AISI	PN 40	40	34.4	30.8	28	26	24.1	23	
	304/304L	PN 63	63	63	57.3	53.1	50.1	46.8	45	
		PN 100	100	86.1	77.1	70	65.2	60.4	57.6	

137.9

215.4

123.4

192.8

112

175

104.3

163

96.7

151.1

92.1

144

160

250

PN 160

PN 250

		Maximum Temperature Allowed									
Material Group	Pressure Class	RT	100	150	200	250	300	350			
Group	01855		Мах	imum Pi	essure /	Allowed ((bar)				
	PN 16	16	16	14.5	13.4	12.7	11.8	11.4			
	PN 25	25	25	22.7	21	19.8	18.5	17.8			
14E0	PN 40	40	40	36.3	33.7	31.8	29.7	28.5			
AISI 316/316L	PN 63	63	63	57.3	53.1	50.1	46.8	45			
	PN 100	100	100	90.9	84.2	79.5	74.2	71.4			
	PN 160	160	160	145.5	134.8	127.2	118.8	114.2			
	PN 250	250	250	227.3	210.7	198.8	185.7	178.5			

		Maximum Temperature Allowed									
Material Group	Pressure Class	RT	100	150	200	250	300	350			
Croup	01033		Max	imum Pr	essure /	Allowed ((bar)				
4050	PN 16	16	16	16	16	16	-	-			
16E0 1.4410	PN 25	25	25	25	25	25	-	-			
Super	PN 40	40	40	40	40	40	-	-			
•	PN 63	63	63	63	63	63	-	-			
1.4462 Duplex	PN 100	100	100	100	100	100	-	-			
	PN 160	160	160	160	160	160	-	-			
	PN 250	250	250	250	250	250	-	-			

Overpressure and Static Pressure Limits (MWP -Maximum Working Pressure) (continuation)

PRESSURES TABLE FOR SEAL AND LEVEL FLANGES ASME B16.5 2009 STANDARD

			Maximum Temperature Allowed									
Material Group	Pressure Class	-29 to 38	50	100	150	200	250	300	325	350		
Croup	Clubb	Maximum Pressure Allowed (bar)										
	150	20	19.5	17.7	15.8	13.8	12.1	10.2	9.3	8.4		
Hastelloy	300	51.7	51.7	51.5	50.3	48.3	46.3	42.9	41.4	40.3		
	400	68.9	68.9	68.7	66.8	64.5	61.7	57	55	53.6		
C276	600	103.4	103.4	103	100.3	96.7	92.7	85.7	82.6	80.4		
	900	155.1	155.1	154.6	150.6	145	139	128.6	124	120.7		
	1500	258.6	258.6	257.6	250.8	241.7	231.8	214.4	206.6	201.1		
	2500	430.9	430.9	429.4	418.2	402.8	386.2	357.1	344.3	335.3		

		Maximum Temperature Allowed									
Material Group	Pressure Class	-29 to 38	50	100	150	200	250	300	325	350	
	01033	Maximum Pressure Allowed (bar)									
	150	20	19.5	17.7	15.8	13.8	12.1	10.2	9.3	8.4	
Duplex	300	51.7	51.7	50.7	45.9	42.7	40.5	38.9	38.2	37.6	
	400	68.9	68.9	67.5	61.2	56.9	53.9	51.8	50.9	50.2	
S32750 Super	600	103.4	103.4	101.3	91.9	85.3	80.9	77.7	76.3	75.3	
Duplex	900	155.1	155.1	152	137.8	128	121.4	116.6	114.5	112.9	
	1500	258.6	258.6	253.3	229.6	213.3	202.3	194.3	190.8	188.2	
	2500	430.9	430.9	422.2	382.7	355.4	337.2	323.8	318	313.7	

					Мах	cimum Te	emperatu	ire Allow	ed		
	Material	Pressure	-29 to 38	50	100	150	200	250	300	325	350
	Group	Class			Maxi	mum Pro	essure A	llowed (I	oar)		
		150	15.9	15.3	13.3	12	11.2	10.5	10	9.3	8.4
		300	41.4	40	34.8	31.4	29.2	27.5	26.1	25.5	25.1
		400	55.2	53.4	46.4	41.9	38.9	36.6	34.8	34	33.4
	AISI316L	600	82.7	80	69.6	62.8	58.3	54.9	52.1	51	50.1
		900	124.1	120.1	104.4	94.2	87.5	82.4	78.2	76.4	75.2
		1500	206.8	200.1	173.9	157	145.8	137.3	130.3	127.4	125.4
		2500	344.7	333.5	289.9	261.6	243	228.9	217.2	212.3	208.9
	Material	Pressure		50	1			Ire Allow		005	050
Overpressure and	Group	Class	-29 to 38	50	100	150	200	250	300	325	350
Static Pressure		150	10	18.4		14.8	13.7	llowed (l 12.1		9.3	9.4
Limits (MWP -		300	19 49.6	48.1	16.2 42.2	38.5	35.7	33.4	10.2 31.6	9.3 30.9	8.4 30.3
Maximum Working Pressure)		400	49.0 66.2	40.1 64.2	42.2 56.3	51.3	47.6	44.5	42.2	41.2	40.4
(continuation)	AISI316	600	99.3	96.2	84.4	77	71.3	66.8	63.2	61.8	60.7
		900	148.9	144.3	126.6	115.5	107	100.1	94.9	92.7	91
		1500	248.2	240.6	211	192.5	178.3	166.9	158.1	154.4	151.6
		2500	413.7	400.9	351.6	320.8	297.2	278.1	263.5	257.4	252.7
		<u> </u>		<u> </u>			<u> </u>		<u> </u>	<u> </u>]
	Meterial	Dragoura			Max	timum Te	emperatu	ire Allow	ed		
	Material Group	Pressure Class	-29 to 38	50	100	150	200	250	300	325	350
					Maxi	mum Pr	essure A	llowed (I	oar)		
		150	19	18.3	15.7	14.2	13.2	12.1	10.2	9.3	8.4
		300	49.6	47.8	40.9	37	34.5	32.5	30.9	30.2	29.6
	AISI304	600	99.3	95.6	81.7	74	69	65	61.8	60.4	59.3
		1500	248.2	239.1	204.3	185	172.4	162.4	154.6	151.1	148.1
		2500	413.7	398.5	340.4	308.4	287.3	270.7	257.6	251.9	246.9
Humidity Limits	0 to 100%	6 RH (Rela	tive Humi	dity)							
Damping Adjustment	User cont	figurable fr	om 0 to 12	28 secor	nds (via	digital co	ommunio	cation).			

Performance Specifications

Reference Conditions	Span starting at zero, temperature of 25 °C (77 °F), atmospheric pressure, power supply of 24 Vdc, fill fluid in Silicone Oil, O'Ring in Buna-N, isolating diaphragms in 316L SST and digital trim equal to lower and upper range values.
Accuracy	 For range 0, and differential or gage models and 316L SST or hastelloy diaphragm with silicon or halocarbon filling fluid: 0.2 URL ≤ span ≤ URL: ± 0.1% of span 0.05 URL ≤ span < 0.2 URL: ± [0.025+0.015 URL/span]% of span For ranges 1, 2, 3, 4, 5 or 6, differential or gage models, and 316L SST or hastelloy diaphragm with silicon or halocarbon filling fluid: 0.1 URL ≤ span ≤ URL: ± 0.075% of span 0.025 URL ≤ span < 0.1 URL: ± [0.0375+0.00375.URL/span]% of span 0.0083 URL ≤ span < 0.025 URL: ± [0.0015+0.00465.URL/span]% of span

Accuracy (continuation)	For ranges 2 to 6 and absolute model. For tantalum or monel diaphragm. For fluorolube filling fluid: 0.1 URL \leq span \leq URL: \pm 0.1% of span 0.025 URL \leq span $<$ 0.1 URL: \pm 0.05[1+0.1 URL/span]% of span 0.0083 URL \leq span $<$ 0.025 URL: \pm [0.01+0.006 URL/span]% of span For range 1 and absolute model: \pm 0.2% of span For ranges 2, 3 or 4 and level model and 316L SST diaphragm with silicon or halocarbon filling fluid with maximum pressure matching the flange pressure class: 0.1 URL \leq span \leq URL: \pm 0.075% of span 0.025 URL \leq span $<$ 0.1 URL: \pm [0.0375+0.00375.URL/span]% of span 0.0083 URL \leq span $<$ 0.025 URL: \pm [0.0015+0.00465.URL/span]% of span Linearity effects, hysterese and repeatability are included.
Stability	 For ranges 2, 3, 4, 5 and 6: ± 0.15% of URL for 5 years at 20 °C temperature change and up to 7 MPa (1000 psi) of static pressure For ranges 0 and 1: ± 0.2% of URL for 12 months at 20 °C temperature change and up to 100 kPa (1 bar) of static pressure For Level transmitters: ± 0.2% of URL for 12 months at 20 °C temperature change
Temperature Effect	For ranges 2, 3, 4, 5 and 6: 0.2 URL \leq span \leq URL: \pm [0.02% URL + 0.06% span] per 20 °C (68 °F) 0.0085 URL \leq span < 0.2 URL: \pm [0.023% URL + 0.045% span] per 20 °C (68 °F) For range 1: 0.2 URL \leq span \leq URL: \pm [0.08% URL + 0.05% span] per 20 °C (68 °F) 0.025 URL \leq span < 0.2 URL: \pm [0.06% URL + 0.15% span] per 20 °C (68 °F) For range 0: 0.2 URL \leq span \leq URL: \pm [0.15% URL + 0.05% span] per 20 °C (68 °F) 0.05 URL \leq span $<$ 0.2 URL: \pm [0.15% URL + 0.3% span] per 20 °C (68 °F) 0.05 URL \leq span $<$ 0.2 URL: \pm [0.1% URL + 0.3% span] per 20 °C (68 °F) 10.05 URL \leq span $<$ 0.2 URL: \pm [0.1% URL + 0.3% span] per 20 °C (68 °F) 0.05 URL \leq span $<$ 0.2 URL: \pm [0.1% URL + 0.3% span] per 20 °C (68 °F) 17 mmH ₂ O per 20 °C for 4" and DN100 17 mmH ₂ O per 20 °C for 3" and DN80 Consult for other flange dimensions and fill fluid.
Static Pressure Effect	Zero error: For ranges 2, 3, 4, 5 and 6: \pm 0.033% URL per 7 MPa (1000 psi) For range 1: \pm 0.05% URL per 1.7 MPa (250 psi) For range 0: \pm 0.1% URL per 0.5 MPa (5 bar) For Level transmitters: \pm 0.1% URL per 3.5 MPa (500 psi) The zero error is a systematic error that can be eliminated by calibrating at the operating static pressure. Span error: For ranges 2, 3, 4, 5 and 6: correctable to \pm 0.2% of reading per 7 MPa (1000 psi) For range 1 and level transmitters: correctable to \pm 0.2% of reading per 3.5 MPa (500 psi) For range 0: correctable to \pm 0.2% of reading per 0.5 MPa (5 bar)
Power Supply Effect	± 0.005% of calibrated span per volt.
Mounting Position Effect	Zero shift of up to 250 Pa (1 inH ₂ O) which can be calibrated out. No span effect.
Electromagnetic Interference Effect	Approved according to IEC61326-1:2006, IEC61326-2-3:2006, IEC61000-6-4:2006, IEC61000-6-2:2005.

Physical Specifications

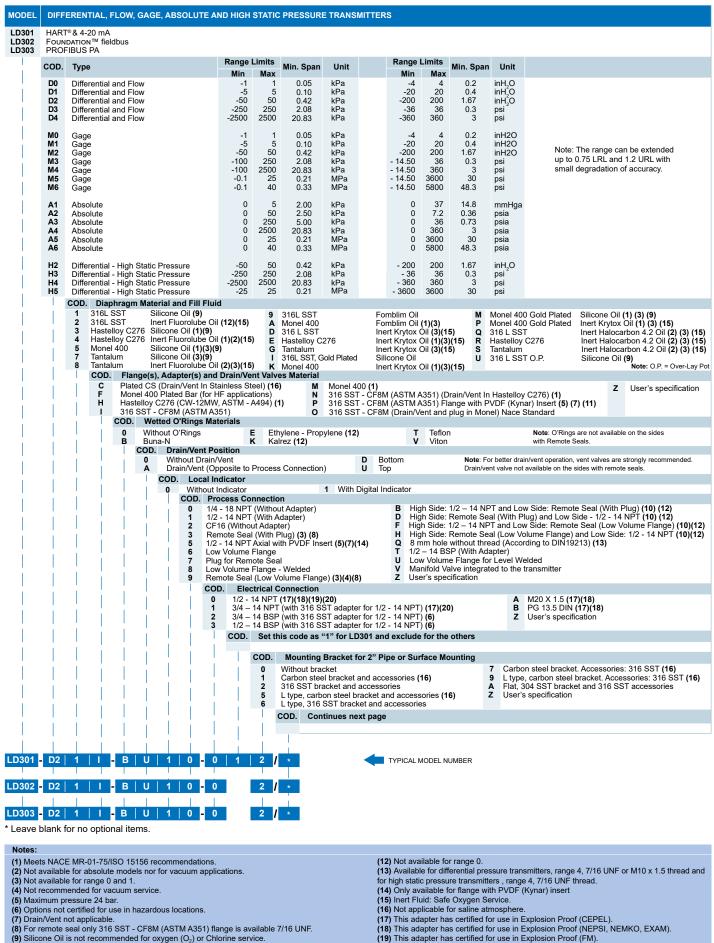
Electrical Connection	$\frac{1}{2}$ - 14 NPT $\frac{3}{4}$ - 14 NPT (with 316 SST adapter for 1/2 - 14 NPT)M20 X 1.5 $\frac{3}{4}$ - 14 BSP (with 316 SST adapter for 1/2 - 14 NPT)PG 13.5 DIN $\frac{1}{2}$ - 14 BSP (with 316 SST adapter for 1/2 - 14 NPT)
Process Connection	¹ ⁄ ₄ - 18 NPT or ¹ ⁄ ₂ -14 NPT (with adapter). For L models see Ordering Code. See Ordering Code for more options.
Wetted Parts	Isolating Diaphragms: 316L SST, Hastelloy C276, Monel 400 or Tantalum. Drain/Vent Valves and Plug: 316 SST, Hastelloy C276 or Monel 400. Flanges: Plated Carbon Steel, 316 SST CF8M (ASTM - A351), Hastelloy C276 - CW-12MW, (ASTM - A494) or Monel 400. Wetted O-Rings (For Flanges and Adapters): Buna-N, Viton [™] , PTFE or Ethylene-Propylene. The LD300 is available in NACE MR-01-75/ISO 15156 compliant materials.
Nonwetted Parts	Electronic Housing: Injected aluminum with polyester painting, epoxy painting or 316 SST - CF8M (ASTM - A351) housing.Complies with NEMA 4X/6P, IP66 ou IP66W*, IP68 ou IP68W*. Note: "The IP66/68W sealing test (immersion) was performed at 1 bar for 24 hours. For any other situation, please consult Smar. IP66/68W tested for 200h to according NBR 8094 / ASTM B 117 standard. Blank Flange: When flange adapter and Drain/Vent material is Carbon Steel, blank flange is in Carbon Steel, otherwise blank flange is in 316 SST CF8M (ASTM - A351). Level Flange (LD300L): 316L SST, 304 SST, Hastelloy C276 and Plated Carbon Steel. Fill Fluid: Silicone, Fluorolube, Krytox, Halocarbon 4.2 or Fomblim oils. Cover O'Ring: Buna-N Mounting Bracket: Plated Carbon Steel or 316 SST. Accessories (bolts, nuts, washers and U-clamps) in Carbon Steel or 316 SST. Flange Bolts and Nuts: Plated Carbon Steel, Grade 8 or 316 SST. For NACE applications: Carbon Steel ASTM A193 B7M. Identification Plate: 316 SST.
Mounting	 a) Flange mounted for Level models. b) Optional universal mounting bracket for surface or vertical/horizontal 2"-pipe (DN 50). c) Manifold Valve integrated to the transmitter. d) Directly on piping for closely coupled transmitter/orifice flange combinations.
Approximate Weights	3.15 kg (7 lb): all models, except L models. 5.85 to 9.0 kg (13 lb to 20 lb): L models depending on the flanges, extension and materials.
Control Functions Characteristics (Optional)	HART® PID Control (PID) and Totalizer (TOT) FOUNDATION [™] fieldbus Resource (RS), Transducer (TRD), Diagnostics Transducer Block (DIAG), Analog Input (AI), PID Control (PID), Advanced PID Control (APID), Arithmetic (ARTH), Integrator (INTG), Input Selector (ISEL), Signal Characterizer (CHAR), Analog Alarm (AALM), Timer and Logic (TIME), Lead Lag (LLAG), Output Signal Selector and Dynamic Limiter (OSDL), Constant (CT) and Density (DENS). PROFIBUS PA Physical Block (PHY), Transducer (TRD), Analog Input (AI) and Totalizer (TOT)

Differential Application Gage -1 1 0.05 kPa -4 4 0.2 inH₂0 D0 -5 5 20 inH₂0 D1 0.10 kPa -20 0.4 Range -50 50 0.42 -200 200 1.67 D2 kPa inH₂0 D3 -250 250 2.08 kPa -36 36 0.3 psi D4 -2500 2500 20.83 -360 360 3 kPa psi M0 -1 1 0.05 kPa -4 4 0.2 inH₂0 M1 -5 5 0.10 kPa -20 20 0.4 inH₂0 -50 50 -200 200 1.67 inH₂0 M2 0.42 kPa M3 -100 250 2.08 kPa -14.50 36 0.3 psi -100 -14.50 M4 2500 20.83 kPa 360 3 psi 30 M5 -0.1 25 0.21 MPa -14.50 3600 psi M6 -0.1 40 0.33 MPa -14.50 5800 48.3 psi -50 50 0.42 kPa -200 200 1.67 inH₂0 H2 -250 H3 250 2.08 kPa -36 36 0.3 psi -2500 2500 20.83 -360 360 H4 kPa 3 psi MPa 30 H5 -25 25 0.21 -3600 3600 psi Diaphragm 316L SST **Material** Hastelloy C276 **Fill Fluid** Silicone

High Performance option (code L1) is available under the following conditions only:

LD300 Series

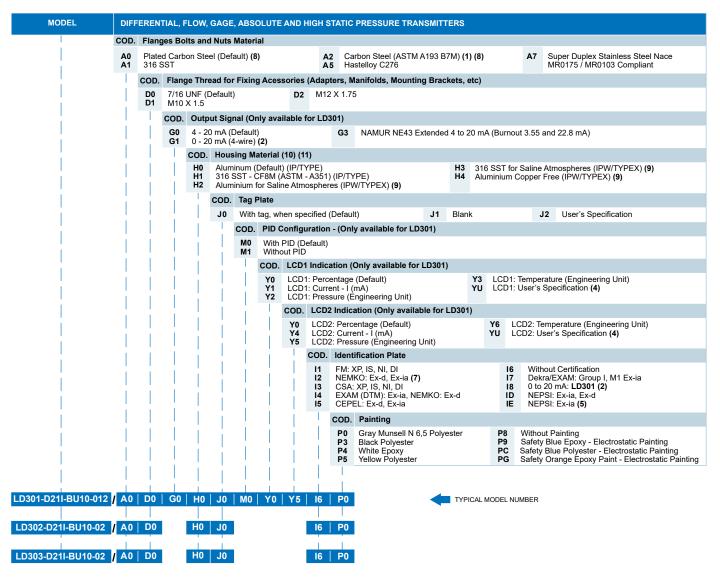
Performance Specifications (Code L1)


Reference Conditions	Span starting at zero, temperature of 25 °C (77 °F), atmospheric pressure, power supply of 24 Vdc, silicone oil fill fluid, isolating diaphragms in 316L SST and digital trim equal to lower and upper range values.
Accuracy	For all L1 ranges: 0.2 URL ≤ span ≤ URL: ± 0.04% of span 0.05 URL ≤ span < 0.2 URL: ± [0.021667 + 0.003667 URL/span]% of span 0.0085 URL ≤ span < 0.05 URL: ± [0.0021 + 0.004645 URL/span]% of span
Stability	 For range 2: ± 0.05% of URL for 6 months For range 3: ± 0.075% of URL for 12 months For range 4: ± 0.1% of URL for 24 months For all M, D, and H transmitters: ± 0.15% of URL for 12 years, at 20 °C temperature change and up to 7 MPa (1000 psi) {70 bar} of static pressure, environment free of hydrogen migration.
Temperature Effect	From -10 °C to 50 °C, protected from direct sun radiation: 0.2 URL ≤ span ≤ URL: ± [0.018% URL + 0.012% span] per 20 °C (36 °F) 0.0085 URL ≤ span < 0.2 URL: ± [0.02% URL + 0.002% span] per 20 °C (36 °F)
Static Pressure Effect	 Zero error: ± 0.025% URL per 7 MPa (1000 psi) The zero error is a systematic error that can be eliminated by calibrating at the operating static pressure. Span error: Correctable to ± 0.2% of reading per 7 MPa (1000 psi).

 Hastelloy is a trademark of the Cabot Corp.
 Fluorolube is a trademark of Hooker Chemical Corp.
 Foundation is a trademark of Fieldbus Foundation.

 Monel is a trademark of International Nickel Co.
 Halocarbon is a trademark of Halocarbon.
 Foundation is a trademark of Profibus International.

 Viton and Teflon are trademarks of E. I. DuPont de Nemours & Co.
 HART® is a trademark of HART® Communication Foundation.
 Smar Pressure Transmitters are protected by US patent number 6,433,791



- (9) Silicone Oil is not recommended for oxygen (O_2) or Chlorine service. (10) Only available for differential pressure transmitters.
- (11) O-ring should be Viton or Kalrez.

- (20) This adapter has certified for use in Explosion Proof (CSA).

Optional Items

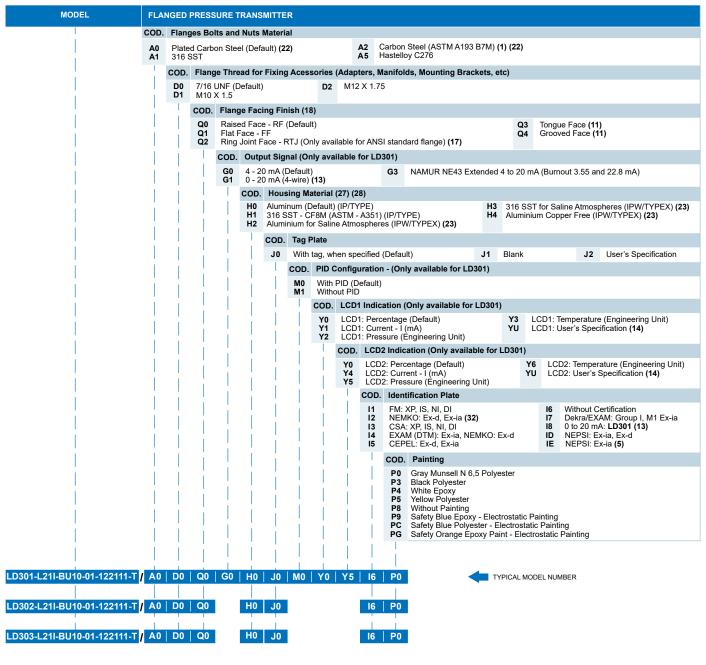
Burn-out (Only available for LD301)	BD - Down Scale (According to NAMUR NE43 specification) BU - Up Scale (According to NAMUR NE43 specification)
Special Applications	C1 - Degrease Cleaning (Oxygen or Chlorine Service) (5)
High Performance	L1- 0.04% accuracy (3)
Square Root Extraction (Only available for LD301D)	M3 - Configured with Square Root Extraction
Special Features	ZZ - User's specification

Notes:

- (1) Meets NACE MR-01-75/ISO 15156 recommendations.
- Meets NACE MR-01-75/ISO 15156 recommendations.
 Without Explosion Proof or Intrinsic Safety approvals.
 Only available for differential and gage pressure models.
 Values limited to 4 1/2 digits; unit limited to 5 characters.
 Degrease cleaning not available for carbon steel flanges.
 Only available for LD302 and LD303 models.
 Only available for saline atmosphere.

(9) IPW/TYPEX tested for 200 hours according to NBR 8094 / ASTM B 117 standard. (10) IPX8 tested in 10 meters of water column for 24 hours.(11) Ingress Protection:

Products	CEPEL	NEMKO / EXAM	FM	CSA	NEPSI
LD300	IP66/68/W	IP66/68/W	Type 4X/6P	Type 4X	IP67


MODEL FLANGED PRESSURE TRANSMITTER

													una lé -										
COE			Min.	e Limits Máx	۰. ^۱	/lin. Sp		Unit.			Min		Máx.	Min. S		Unit.							
L2 L3 L4 L5			-50 -250 -2500 -25000	25 250 2500	00	1.2 2.0 20.8 208.3	08 33	kPa kPa kPa kPa			-20 -3 -36 -362	36 30	200 36 360 3625	3	5 0.3 3 0.2	inH₂O psi psi psi	with s	small d	egradat		curacy. Th		RL and 1.2 UF range value
		2 3 3 1 4 1 5 1	Diaphrag 316L SST 316L SST Hastelloy (Hastelloy (Monel 400 Fantalum	C276 S C276 S C276 II S S	Silicone nert Flu Silicone nert Flu Silicone	e Oil (2) Jorolub e Oil (1)	e Oil ((2) e Oil ((2)	3) (26)		9 A D E	Tanta 316L Mone 316L 316L Haste Tanta	SST el 400 SST elloy C	Fo Fo In 276 In	ert Fluor omblim (omblim (ert Krytc ert Krytc ert Krytc	Dil Dil (1) x Oil (2 x Oil (1) (26)	M M P M Q 3 R H	/lonel 4	400 Gole 400 Gole 3T vy C276	d Plated d Plated	Inert Halo Inert Halo	Dil (1) (2) ox Oil (1) ocarbon 4 ocarbon 4	
		C		ange, A	dapte	r and D)rain/	/ent Va	lves r	nateri	ial (Lo	w Side	9)										
			C Pla F Mo	L SST ted CS nel 400 stelloy C	Plated	Bar (fo	r HF a	applicat	iońs)				I M N P	Monel 316 S	400 (1) ST – CF	- 8M (AST	M – A351) M – A351) (E M – A351) Fl) (4) (5)	
			COE			'Ring N	/lateri	al (Low		•	ono D	Propulo	n 0		т	Toflon			Noto	O'ringo (are not ove	ilabla ar	the
			0 B	Buna		lings				Kalre	ene - P z	торую	ne		T V	Teflon Viton					are not ava ote seals.		
				COD. 0 A	With	out Dra N/Vent (in/Ver	nt .			nnectio	n)	D U	Low Upper			For better Dra /ent valve are						/ recommend als
					COD.	Loc Witho		icator icator				1	With D	igital inc	licator								
						COD.		ocess			•			Ū									
						0 1 2 3	1/2 - CF1 Rem	18 NP 14 NP 6 (Witho ote Sea	F (With out Ad al (Wit	hout A apter) h Pluç	dapter)] (7)	-)		6 7 8 9	Plug f Low V Remo	or Remote /olume Fla te Seal (Lo	ange - Welde ow Volume Fl	d	3) (7)	V Wi Fla	ithout Conn ange)	ection (N	or Level Weld lounted with G bsolut Refere
			ιì			5	1/2 - COI	14 NPT D. Ele			'VDF In nnecti) (4) (6)	т	1/2 14	I BSP (WI	th Adapter)						
				Ì			0 1 2 3	3/4 3/4	– 14 M – 14 E	NPT (v BSP (v	with 31	6 SST 6 SST	adapte adapte	r for ½	· 14 NP		1)		B PO		(24)(29) IN (24)(29) cification)	
							3	COD). Ze	ero ar	nd Spa	ın Adjı	ust	for ½ -	14 NP	i)(9)							
i								1	CO				djustme nectior										
									UVWOPQ9A	1" (1" (1.1 1.1 1.1 2"	300 #(600 #(/2" 150 /2" 300	(ANSI (ANSI) # (AN) # (AN) # (AN ANSI E		33) 3 3) 5) 5)	1 3" 2 3" C 3" N 3" 3 4" 4 4"	300 # (AN 600 # (AN 600 # (AN 150 # (AN 300 # (AN	ISI B16.5 ISI B16.5) ISI B16.5) ISI B16.5 ISI B16.5 RT. ISI B16.5) ISI B16.5) ISI B16.5) ISI B16.5)		 R DN E DN 6 DN 7 DN 8 DN S JIS 	25 PN 10 40 PN 1 50 PN 1 80 PN 1 100 PN 2 40A 20 50A 10	0/40 0/40 0/40 10/16 25/40 K (21)	K J G J H J M J	IS 50A 40K (; IS 50A 20K (; IS 80A 10K (; IS 80A 20K (; IS 100A 10K (; IS 100A 20K (; ISer's specifica
Ì					Ì					CC 2 2 2	2 31 Z Us	I6L SS ser's s	T (Integ pecifica	ral Flan tion	ge)		stelloy C276 4 SST (Slip-o			le)			-on Flange) (Slip-on Flan
												_	Extens 0 mm (ion Len)")	gth 2	100 m	m (4")	4	200 n	nm (8")		Nota	: Extension
			ļļ									15	0 mm (2	2")	3 am Ma	150 m	ım (6") xtension (Le	Z Vol Tar	User'	s specifi	cation		erial 316L SST
													A 30 1 31 2 Ha	4L SST 6L SST	/ 304L / 316 S 2276 / 3	SST ST 16 SST	4 Tantalum / 5 Titanium /	, 316 S 316 S with Tel	ST (10) ST (10) flon Linir	ng (for 2"a	and 3") L	Hastelloy	with Teflon Li with Teflon Li inless Steel wi
									i				1.00			d (Level		with O		g			ing (20)
									Ì		 			3 DC 2 MC	; 704 S 0 – 10 F	ilicone Oil ilicone Oil luorolube	Oil (8) N	Neobe Krytox			Glycol Oil	G Gly	llocarbon 4.2 /cerin + Water mblim 06/06
							İ		İ		 			!	0 W 1 St					4 Du	iper Duple iplex (UNS onel		32750) (11) (11)
							İ		Ì					i I		0 With	iskte Materia nout gasket on (PTFE)	C	Graf		ble lead)	I	Stainless 310
														(COE	D. Continu	les Ne	xt Page				
)1 - L2		1	I - B	U	1	0	- 0	1	- 1	2	2 2	2	1	1 ·	-	т / 🔹			т 🔶	YPICAL N	10DEL NUM	BER	
2 - L2	'		I - B	U	1	0	- 0	1	- 1	2	2 2	2	1	1 1	-	T / *							
- I			 - B	 U		0	- 0					2											

* Leave it blank when there are not optional items.

smar

LD300 Series

Optional Items

Burnout	BD - Down Scale (Acc	cordance to NAMUR NE43 specification)	BU -	Up Scale (Accordance to NAMUR NE43 specification)
Special Procedures	C1 - Degrease Cleani	ng (Oxygen or Chlorine Service) (15)	C2 –	For Vacuum Application
Special Features	ZZ – User's Specificat	tion.		
Gasket Connection	U1 - With Two Flush C	ection of 1/4" NPT (If supplied with housing connections of 1/4" NPT at 180° connections of 1/4" NPT at 90°)	U3 - With Two Connections of 1/2" NPT - 14 NPT at 180° (With Lid) U4 - Without gastek connection
Insulator Kit	K0 – Without Kit	K1 – With Kit		
Diaphragm Thickness (16)	N0 - Default (25)	N1 - 0.1mm (11)		

Notes - LD300L:

- Meets NACE MR 01 75/ISO 15156 recommendations.
 Silicone oil not recommended for Oxygen (O2) or Chlorine Service.
 Not applicable for vacuum service.
 Drain/Vent is not applicable.
 O-ring material must be of Viton or Kalrez.
 Maximum pressure 24 bar.

- (6) Maximum pressure 24 bar.
 (7) For remote seal is only available flange in 316 stainless steel– CF8M (ASTM A351) (thread M12).
 (8) Fluorolube fills fluid not available with Monel diaphragm.
 (9) Options not certified for use in hazardous locations.
 (10) Attention, check corrosion rate for the process, tantalum plate 0.1 mm, AISI 316L extension 3 to 6mm.
 (11) Item by inquiry.
 (12) Supplied without Gasket.
 (13) Without certification for Explosion proof certification or Intrinsically safe.
 (14) Limited values to 4 1/2 digits; limited unit to 5 characters.
 (15) Degreaser's cleaning is not available for carbon steel flanges.
 (16) The insulator kit is applicable with Raised Face (HO) and Smooth Face (H1) with Gasket material. T(Teflon) and only for the following models: ANSI until #600, DIN until P40 and JIS until 40K:

- material. T (Teflon) and only for the following models: ANSI until #600, DIN until P40 and JIS until 40K;
 For models with extension the Gasket T (Teflon) it has special share.
 (17) Gasket for housing, available only in Stainless 316.
 (18) Finishing flange faces:
 ANSI B 16.5 / MSS-SP6:
 Raised or Smoth Face with gooved lining: 3.2 to 6.3 μm Ra (125 a 250 μ" AA);
 Small or Large Tongue Face and Small or Large Groove with smooth finishing not exceeding: 3.2 μm Rt (125 μ" AA);
 RT J ANSI B 16.20 / MSS-SP6:
 Smooth finishing not exceeding: 1.6 μm Rt (63 μ" AA);

 - RTJ ANSI B 16.20 / MSS-SP6: -Smooth finishing not exceeding: 1.6 μ m Rt (63 μ " AA); DIN EN-1092-1: Grooved finishing "B1" (PN 10 a PN40): 3.2 a 12.5 μ m Ra (125 a 500 μ " AA); Smooth finishing "B2" (PN 63 a PN100), "C" (Tongue) e "D" (Groove): 0.8 a 3.2 μ m Ra (32 a 125 μ " AA). Din 2501 (DIN 2526): Smooth finishing "E" (PN 160 a PN250): Rz = 16 (3.2 μ m Ra (125 μ " AA). Standard Jis B2201 Grooved finishing 3.2 a 6.3 μ m Ra (125 a 250 μ " AA).

- (19) Temperature application range: -40 to 150°C.(20) Applicable only for:

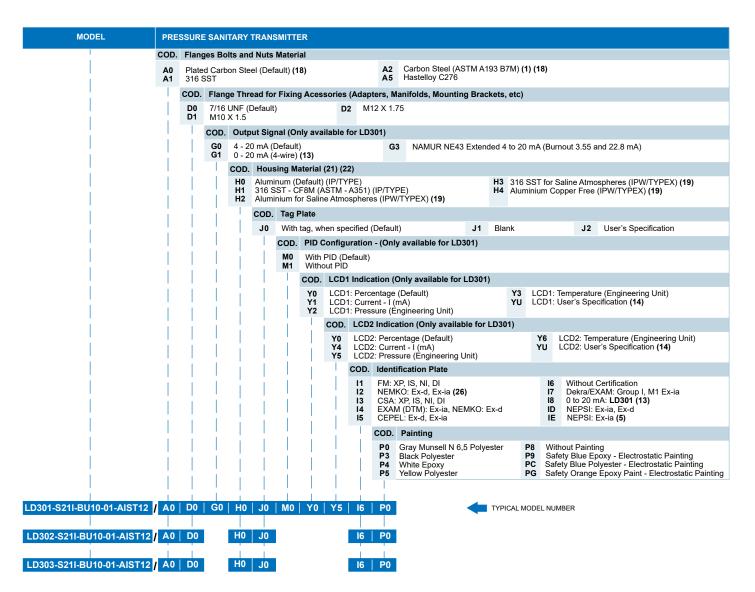
- Diaphragm Thickness of 0.05mm.
 Diameters/Capillary Length:
 2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models
- (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models. 4" ANSI B 16.5, DN 100 DIN, JIS 100 A, for seals up to 8 meters of capillary and level models.

- 4" ANSI B 16.5, DN 100 DIN, JIS 100 A, for seals up to 8 meters of capillary and level models.
 Faces: RF and FF.
 Temperature Limits:

 +10 to 100°C;
 +101 to 150°C (by inquiry).
 Not applicable for diaphragm thickness: N1 0.10mm.
 Not applicable for saline atmosphere.

 (21) Not available for saline atmosphere.
 (23) IPW/TYPEX tested for 200 hours according to NBR 8094 / ASTM B 117 standard.
 (24) Certificate for use in explosive atmosphere (CEPEL).
 (25) Diaphragms of Titanium and Monel available only in 0.1 mm, and diaphragms of Tantalum only in 0.075 mm.
 (26) Inert Fluid: Safe Oxygen service.
 (27) IPX8 tested in 10 meters of water column for 24 hours.

Products	CEPEL	NEMKO / EXAM	FM	CSA	NEPSI
LD300	IP66/68/W	IP66/68/W	Type 4X/6P	Type 4X	IP67


- (29) This adapter has certified for use in Explosion Proof (NEPSI, NEMKO, EXAM).
 (30) This adapter has certified for use in Explosion Proof (FM).
 (31) This adapter has certified for use in Explosion Proof (CSA).
 (32) Only available for LD301.
 (33) Not available for integral flange.

PRC	FIBUS																					
COD.		Range Min.	Limits Máx.	м	lin. Spa	in Unit.			Ran Min.	ge Lin I	nits Máx.	Min.	Span	Unit.								
S2 S3 S4 S5	COD.	-50 -250 -2500 -25000 Diaphrag	50 250 2500 25000 Im Mate)))	1.2 2.0 20.8 208.3 nd Fill I	8 kPa 3 kPa	a a a		-200 -36 -360 -362	6 D	200 36 360 3625		0.3 3 30.2	inH ₂ O psi psi psi		URI	with	ı small d	egradation	ended up to of accuracy. connection	The uppe	
	1 2 3 4 5 7	316L SST 316L SST Hastelloy (Hastelloy (Monel 400 Tantalum	Si In C276 Si C276 In Si Si	licone ert Flu licone ert Flu licone licone	e Oil (2) uorolub e Oil (1) uorolub e Oil (1) e Oil (2)	e Oil (3) (1 (2) e Oil (1) (3 (2)	9)) (19)	8 9 A D E G	316L Mon 316L Hast Tanta	alum	C276	Fomblir Fomblir Inert Kr	n Oil n Oil (1 ytox Oi ytox Oi	í (19) I (1) (19)	(19)	K M P Q R S	Mor Mor 316 Has		Gold Plated Gold Plated 276		il (1) (2) x Oil (1) (1 carbon 4.2 carbon 4.2	9) Oil (Oil (
	Ì	C Plat H Has	ted CS (stelloy C	Drain/ 276 (0	Vent in CW – 12	and Drain Stainless 2MW, AST I – A351)	Steel) (18)	eriai (L	ow Si		N 31		– Čŕ8M (oy C276) (1) mar) insert (3	3) (4) (5)	
	Ì	COD 0 B	0. Wet Witho Buna	ut O-l	-	Aaterial (L E T	Eth	ylene -	- Propyl		21)		V K	Viton Kalrez)-Rings are r s with remo		le or
	i.		COD.	With	out Dra		,				D	Botte	om							alves are str		mme
i.			A	Drain COD.		site to pro al Indicato		onnectio	on)		U	Тор		Dr	ain val	lve are	not a	vailable	on the side	s with remot	e seal	
				0	Witho	ut Indicato Proces		nectior	ו (Low		1	With D	igital In	dicator								
					0 1 2 3 5	1/4 - 18 N 1/2 - 14 N CF16 (Wit Remote S 1/2 - 14 N	PT (With thout Active al (With	thout Ac dapter) th Plug	dapter)) (7)	sert (3)) (4) (6	7 8 9	Plug for Low V Remo	/olume Fla or Remote /olume Fla te Seal (L 4 BSP (Wi	e Šeal inge - V ow Voli	Velded ume Fla		(3) (7)	V Witho Flang	/olume Flang out Connectio e) ut Connection	n (Mounted	d with
						0 1 1 3 2 3	/2 - 14 /4 - 14 /4 - 14	NPT (2 NPT (V BSP (V	Vith 316	24)(25 5 SST 5 SST	adapt adapt	er for 1	/2 - 14	NPT) (20) NPT) (9) NPT) (9)	(25)			A B Z		5 (20)(23) DIN (20)(23) pecification		
-i				ł					n d Spa al Adjus	-												
				i.			C	DD. F	Proces	s Con	nectio											
								9 Th Th V Th Th Th Th Th Th Th Th Th Th Th Th Th T	readed readed readed readed readed readed readed readed readed readed readed readed readed readed readed	DN40 DN40 DN50 DN50 DN80 DN80 IDF 2" IDF 2" IDF 3" RJT 2 RJT 2 RJT 3 SMS 1	DIN 1 DIN 1 DIN 1 DIN 1 DIN 1 DIN 1 - with - /2"-	1851 - v 1851 - v 1851 - v 1851 - v 1851 - v 1851 - v ext. / 3 out ext. 1 out ext. 1 out ext. 3 out ext.	vith ext. vithout e vith ext. vithout e vith ext. vithout e 16L SS / 316L 16L SS / 316L 16L SS / 316L 16L SS / 316L t ext. / 3	/ 316L S; / 316L S; ext. / 316L S; ext. / 316L S; ext. / 316L S; ext. / 316L S; ext. / 316L S; SST (10) TT (10) (11 SST (10) TT (10) (11 SST (10) (11 SST (10) (11 SST (10) (11 SST (10) (11) SST (10)	ST (10) _ SST (ST (10) _ SST (ST (10) _ SST () (11)) (11)) (10) (1	(11) 10) (11) 10) (11) (11) (11) (10)	M1FQ6DNP-GJR	Thread Thread Tri-Clar Tri-Clar Tri-Clar Tri-Clar Tri-Clar Tri-Clar Tri-Clar Tri-Clar Tri-Clar Tri-Clar Tri-Clar	ed SMS 3" ed SMS 3" - np 1 1/2" - H np 2" - with np 2" - with np 2" - P - v np 2" HP - v np 3" HP - v np 3" HP - v specification	ext. = exten	16L SST (1 / 316L SST 316L SST 316L SST (11) L SST (11) SL SST (11) ST (11) L SST (11) L SST (11) L SST (11) SL SST (8) 316L SST (8)	10) (1 ⊤ (10) (11) (S⊤ (8 (11) (8) (1
										Diaph astello	-	Materia	al (High	n Side)	I	316L S	et					
									1		Fill F					510L C	551					
	ļ							 	1	D I F I	DC 70	0 – Silio 4 – Silio lube Mo Wet	cone Oi		T N K	Sylthe Neobe Krytox	ee M2	20 (11)		H Halocar G Glycerir B Fomblin	n + Water (12)
ł	i.				i.						0	Withou	ut O-ring			eflon (1	1)	В	Buna-N	(11)	V Vito	n (11
- İ-			i.	i.			İ.				i	COD.	Withou	Adapter ut Tank Ad	lapter		_					
				Ì		i.						1	COD.	ank Adap Tri-Cla		316 SS I						
													02	Without With Tri-			SST					
																nues ne		age				
										1												
S2	1			1	0		1	A 		s 		1	2	*		•		TYPICA	L MODEL NU	JMBER		
			 U	1			1	A		 S	Т	1	2	*								
S 2					1																	

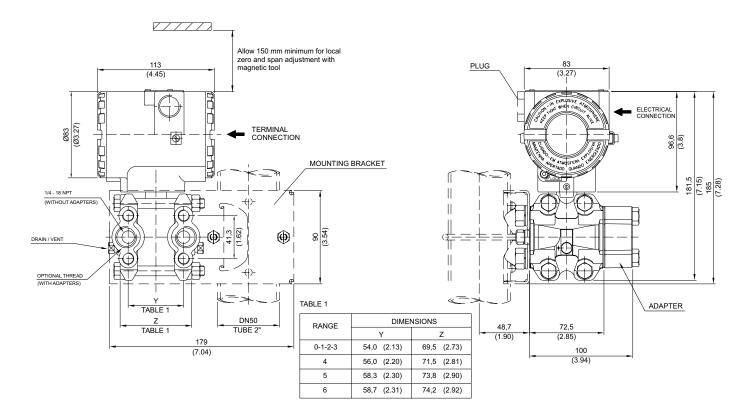
Ordering Code (Continued)

Optional Itens

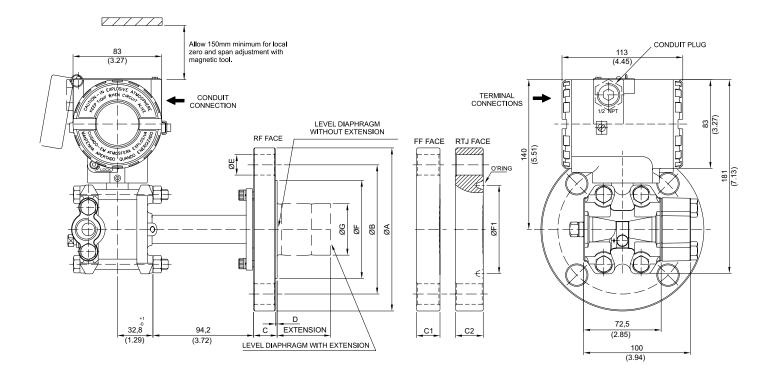
Burn-out	BD – Down Scale (Accordance to NAMUR NE43 specification) BU – Up Scale (Accordance to NAMUR NE43 specification)
Special Procedures	C1 – Degrease Cleaning (Oxygen or Chlorine Service) (15) C2 – For Vacuum Application C4 – Polishing of the wet parts according to 3A Certification (11) (12)
Special Features	ZZ – User's Specification
Diaphragm Thickness	N0 – Default N1 – 0.1mm (12)

Note - LD300S:

- (1) Meets NACE MR-01-75/ISO 15156 recommendations
- (2) Silicone oil not recommended for Oxygen (O2) or Chlorine Service.
- (3) Not applicable for vacuum service. (4) Drain not applicable.
- (5) O-Ring material must be of Viton or Kalrez.
- (6) Maximum pressure 24 bar.
- (7) For remote seal is only available flange in 316 Stainless Steel CF8M (ASTM A351) (thread M12).
- (8) HP High Pressure
- (9) Options not certified for use in hazardous locations.
- (10) Not available for Tri-clamp.
 (11) Compliant with 3A-7403 standard for food and other applications where sanitary connections are required: - Neobee M2O Fill Fluid
- Finishing wet Face: 0,8 μm Ra (32 μ" AA)
 Wet O-Ring: Viton, Buna-N and Teflon
- (12) Item by inquiry.(13) Without certification for explosion proof or intrinsically safe.
- (14) Limited values to 4 1/2 digits; limited unit to 5 characters.

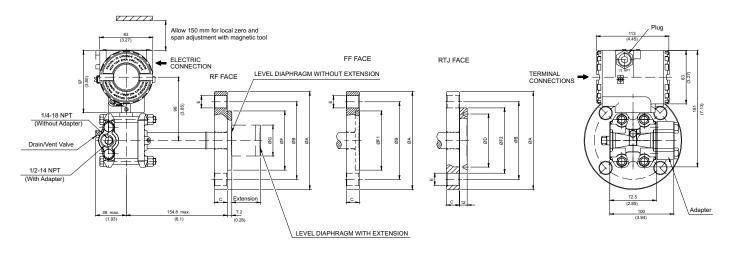

- (15) Degrease cleaning is not available for Carbon Steel Flanges.
 (16) Temperature application range: -40 to 140 °C and Tables 5 and 6 from the following page.
- (17) Inert Fluid: Safe Oxygen service.(18) Not applicable for saline atmosphere.
- (19) IPW/TYPEX tested for 200 hours according to NBR 8094 / ASTM B 117 standard.
 (20) Certificate for use in Explosion Proof (CEPEL).
 (21) IPX8 tested in 10 meters of water column for 24 hours.

(22) Ingress Protection:


Products	CEPEL	NEMKO / EXAM	FM	CSA	NEPSI
LD300	IP66/68/W	IP66/68/W	Type 4X/6P	Type 4X	IP67

- (23) This adapter has certified for use in Explosion Proof (NEPSI, NEMKO, EXAM).
 (24) This adapter has certified for use in Explosion Proof (FM).
 (25) This adapter has certified for use in Explosion Proof (CSA).
 (26) Only available for LD301.

LD300 - Differential, Flow, Gage, Absolute and High Static Pressure Transmitters with Mounting Bracket

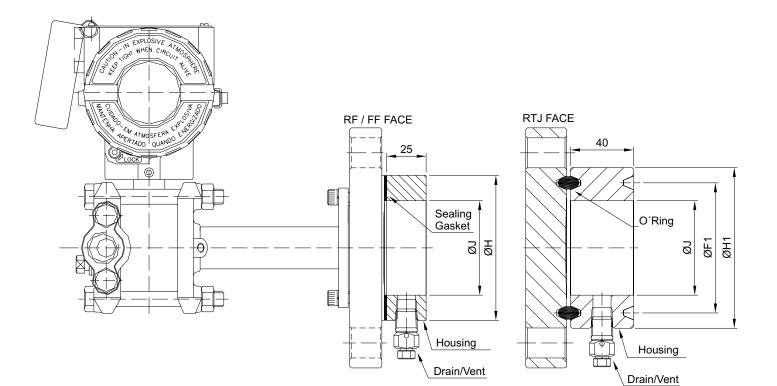


Flanged Pressure Transmitter with Integral Flange

Notes: - Extension lenght (mm): 0, 50, 100, 150 or 200 - Dimensions are mm (in)

										ANSI-B 16.5	5 DIN	IENSIC	NS								
DN	CLASS	ļ ,	4	E	3	С (RF)	C1	(FF)	C2 (RTJ)	D	(RF)		E	F (F	RF)	F1 (RTJ)	RTJ O`RING		G	HOLES
	150	127	(5)	98.6	(3.88)	20	(0.78)	19	(0.75)	24.4 (0.96)	1.6	(0.06)	16	(0.63)	73.2	(2.88)	65.1 (2.56)	R19	40	(1.57)	4
1.1/2"	300	155.4	(6.12)	114.3	(4.5)	21	(0.83)	21	(0.83)	27.4 (1.07)	1.6	(0.06)	22	(0.87)	73.2	(2.88)	68.3 (2.68)	R20	40	(1.57)	4
	600	155.4	(6.12)	114.3	(4.5)	29.3	(1.15)	29.3	(1.15)	29.3 (1.15)	6.4	(0.25)	22	(0.87)	73.2	(2.88)	68.3 (2.68)	R20	40	(1.57)	4
	150	152.4	(6)	120.7	(4.75)	22	(0.87)	20	(0.78)	25.9 (1.02)	1.6	(0.06)	19	(0.75)	91.9	(3.62)	82.6 (3.25)	R22	48	(1.89)	4
2"	300	165.1	(6.5)	127	(5)	22.8	(0.9)	22.8	(0.89)	30.8 (1.21)	1.6	(0.06)	19	(0.75)	91.9	(3.62)	82.6 (3.25)	R23	48	(1.89)	8
	600	165.1	(6.5)	127	(5)	32.3	(1.27)	32.3	(1.27)	32.3 (1.27)	6.4	(0.25)	19	(0.75)	91.9	(3.62)	82.6 (3.25)	R23	48	(1.89)	8
	150	190.5	(7.5)	152.4	(6)	24.4	(0.96)	24.4	(0.96)	30.7 (1.21)	1.6	(0.06)	19	(0.75)	127	(5)	114.3 (4.50)	R29	73	(2.87)	4
3"	300	209.5	(8.25)	168.1	(6.62)	29	(1.14)	29	(1.14)	36.9 (1.45)	1.6	(0.06)	22	(0.87)	127	(5)	123.8 (4.87)	R31	73	(2.87)	8
	600	209.5	(8.25)	168.1	(6.62)	38.7	(1.52)	38.7	(1.52)	40.2 (1.58)	6.4	(0.25)	22	(0.87)	127	(5)	123.8 (4.87)	R31	73	(2.87)	8
	150	228.6	(9)	190.5	(7.5)	24.4	(0.96)	24.4	(0.96)	30.7 (1.21)	1.6	(0.06)	19	(0.75)	158	(6.22)	149.2 (5.87)	R36	96	(3.78)	8
4"	300	254	(10)	200	(7.87)	32.2	(1.27)	32.2	(1.27)	40.2 (1.58)	1.6	(0.06)	22	(0.87)	158	(6.22)	149.2 (5.87)	R37	96	(3.78)	8
	600	273	(10.75)	215.9	(8.5)	45	(1.77)	45	(1.77)	46.5 (1.83)	6.4	(0.25)	25	(1)	158	(6.22)	149.2 (5.87)	R37	96	(3.78)	8
										EN 1092-1	DIME	INSION	S								
DN	PN	A		В		С (RF)	C1	(FF)			D		E	F (F	RF)			(G	HOLES
DN40	10/40	150	(5.9)	110	(4.33)	20	(0.78)	20	(0.78)		3	(0.12)	18	(0.71)	88	(3.46)			40	(1.57)	4
DN50	10/40	165	(6.5)	125	(4.92)	20	(0.78)	22	(0.86)		3	(0.12)	18	(0.71)	102	(4.01)			48	(1.89)	4
DN80	10/40	200	(7.87)	160	(6.3)	24	(0.95)	24	(0.94)		3	(0.12)	18	(0.71)	138	(5.43)			73	(2.87)	8
DN100	10/16	220	(8.67)	180	(7.08)	20	(0.78)				3	(0.12)	18	(0.71)	158	(6.22)			96	(3.78)	8
	25/40	235	(9.25)	190	(7.5)	24	(0.95)				3	(0.12)	22	(0.87)	162	(6.38)			96	(3.78)	8
										JIS B 2202	DIM	INSION	IS								
DN	CLASS	A		В		(0					D		E	F (F	RF)			(G	HOLES
40A	20K	140	(5.5)	105	(4.13)	26	(1.02)				2	(0.08)	19	(0.75)	81	(3.2)			40	(1.57)	4
50A	10K	155	(6.1)	120	(4.72)	26	(1.02)				2	(0.08)	19	(0.75)	96	(3.78)			48	(1.89)	4
	40K	165	(6.5)	130	(5.12)	26	(1.02)				2	(0.08)	19	(0.75)	105	(4.13)			48	(1.89)	8
80A	10K	185	(7.28)		(5.9)	26	(1.02)				2	(0.08)	19	(0.75)	126	(4.96)			73	(2.87)	8
	20K	200	(7.87)		(6.3)	26	(1.02)		/		2	(0.08)	19	(0.75)	132	(5.2)			73	(2.87)	8
100A	10K	210	(8.27)	175	(6.89)	26	(1.02)				2	(0.08)	19	(0.75)	151	(5.95)			96	(3.78)	8

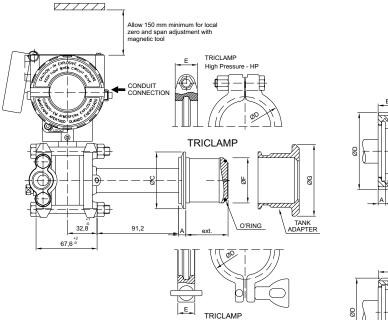
LD300L - Flanged Pressure Transmitter with Slip-on Flange


							A	NSI-B	16.5 [DIME	NSION	S								
DN	CLASS	Å	4	E	3		С		C		E	F (F	RF)	F1 (FF)	F2 (F	tJ)	(G	# HOLES
1"	150	108	(4.25)	79.4	(3.16)	14.3	(0.56)		-	16	(0.63)	50.8	(2)	50.8	(2)	-			-	4
	300/600	124	(4.88)	88.9	(3.5)	17.5	(0.69)		-	19	(0.75)	50.8	(2)	50.8	(2)	-			-	4
1 1/2"	150	127	(5)	98.4	(3.87)	17.5	(0.69)		-	16	(0.63)	73	(2.87)	73	(2.87)	-		40	(1.57)	4
1 1/2	300/600	156	(6.14)	114.3	(4.5)	22.2	(0.87)		-	22	(0.87)	73	(2.87)	73	(2.87)	-		40	(1.57)	4
	150	152.4	(6)	120.7	(4.75)	17.5	(0.69)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	101.6	(4.00)	48	(1.89)	4
2"	300	165.1	(6.5)	127	(5)	20.7	(0.8)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	107.9	(4.25)	48	(1.89)	8
	600	165.1	(6.5)	127	(5)	25.4	(1)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	107.9	(4.25)	48	(1.89)	8
	150	190.5	(7.5)	152.4	(6)	22.3	(0.87)	114.3	(4.50)	19	(0.75)	127	(5)	127	(5)	133.4	(5.25)	73	(2.87)	4
3"	300	209.5	(8.25)	168.1	(6.62)	27	(1.06)	123.8	(4.87)	22	(0.87)	127	(5)	127	(5)	146.1	(5.75)	73	(2.87)	8
	600	209.5	(8.25)	168.1	(6.62)	31.8	(1.25)	123.8	(4.87)	22	(0.87)	127	(5)	127	(5)	146.1	(5.75)	73	(2.87)	8
	150	228.6	(9)	190.5	(7.5)	22.3	(0.87)	149.2	(5.87)	19	(0.75)	158	(6.22)	158	(6.22)	171.5	(6.75)	89	(3.5)	8
4"	300	254	(10)	200	(7.87)	30.2	(1.18)	149.2	(5.87)	22	(0.87)	158	(6.22)	158	(6.22)	174.6	(6.87)	89	(3.5)	8
	600	273	(10.75)	215.9	(8.5)	38.1	(1.5)	149.2	(5.87)	25	(1)	158	(6.22)	158	(6.22)	174.6	(6.87)	89	(3.5)	8

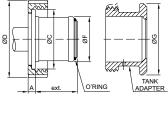
				EN	1092-1	I / DI	N2501	DII	MENSI	ONS -	RF/ FI	F		
DN	PN		۹.	E	3		С		E	F			G	# HOLES
25	10/40	115	(4.53)	85	(3.35)	18	(0.71)	14	(0.55)	68	(2.68)		-	4
40	10/40	150	(5.91)	110	(4.33)	18	(0.71)	18	(0.71)	88	(3.46)	73	(2.87)	4
50	10/40	165	(6.50)	125	(4.92)	20	(0.78)	18	(0.71)	102	(4.01)	48	(1.89)	4
80	10/40	200	(7.87)	160	(6.30)	24	(0.95)	18	(0.71)	138	(5.43)	73	(2.87)	8
100	10/16	220	(8.67)	180	(7.08)	20	(0.78)	18	(0.71)	158	(6.22)	89	(3.5)	8
100	25/40	235	(9.25)	190	(7.50)	24	(0.95)	22	(0.87)	162	(6.38)	89	(3.5)	8

NOTES:

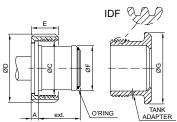
-EXTENSION LENGTH IN mm(in): 0, 50 (1.96), 100 (3.93), 150(5.9) or 200 (7.87) -FOR 1" AND DN25 THE EXTENSION LENGTH IS 0 mm -DIMENSIONS IN mm(in)

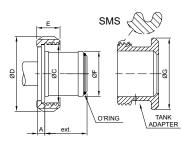

LD300L - Flanged Pressure Transmitter with Housing

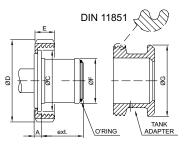
DIMENSIONS	IN	mm	(")
------------	----	----	-----


ANSI-B 16.5 DIMENSIONS						
DN	CLASS	Н	J			
1.1/2"		73,2 (2,88)	48 (1,89)			
2"	ALL	91,9 (3,62)	60 (2,36)			
3"		127 (5,00)	89 (3,50)			
4"		158 (6,22)	115 (4,53)			
DIN EN1092-1/ DIN2501/2526 FORM D DIMENSIONS						
DN	PN	Н	J			
40		88 (3,46)	48 (1,89)			
50	ALL	102 (4,02)	60 (2,36) 89 (3,50)			
80	1	138 (5,43)				
100		158 (6,22)	115 (4,53)			
JIS B 2202 DIMENSIONS						
DN	CLASS	Н	J			
40A	20K	81 (3,19)	48 (1,89)			
50A	10K	96 (3,78)	60 (1,36)			
	40K	105 (4,13)	60 (1,36)			
80A	10K	126 (4,96)	89 (3,50)			
	20K	132 (5,20)	89 (3,50)			
100A	10K	151 (5,94)	115 (4,53)			

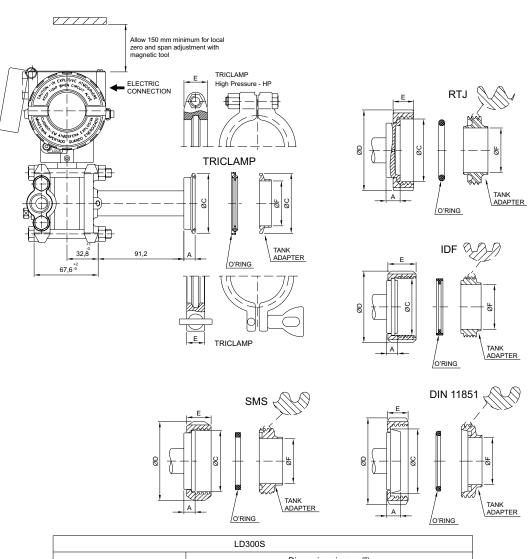
DIMENSIONS IN mm (")


	ANSI-B 16.5 DIMENSIONS - RTJ FACE							
DN	CLASS	F1	0`RING	H1	J			
	150	65,1 (2,56)	R19	82,5 (3,25)	48 (1,89)			
	300	68,3 (2,69)	R20	90,5 (3,56)	48 (1,89)			
1.1/2"	600	68,3 (2,69)	R20	90,5 (3,56)	48 (1,89)			
	1500	68,3 (2,69)	R20	92 (3,62)	48 (1,89)			
	2500	82,6 (3,25)	R23	114 (4,50)	48 (1,89)			
-	150	82,6 (3,25)	R22	102 (4,00)	60 (2,36)			
	300	82,6 (3,25)	R23	108 (4,25)	60 (2,36)			
2"	600	82,6 (3,25)	R23	108 (4,25)	60 (2,36)			
	1500	95,3 (3,75)	R24	124 (4,88)	60 (2,36)			
	2500	101,6 (4,00)	R26	133 (5,25)	60 (2,36)			
3"	150	114,3 (4,50)	R29	133 (5,25)	89 (3,50)			
	300	123,8 (4,87)	R31	146 (5,75)	89 (3,50)			
	600	123,8 (4,87)	R31	146 (5,75)	89 (3,50)			
	150	149,2 (5,87)	R36	171 (6,75)	115 (4,53)			
4"	300	149,2 (5,87)	R37	175 (6,88)	115 (4,53)			
	600	149,2 (5,87)	R37	175 (6,88)	115 (4,53)			




LD300S - Sanitary Transmitter with Extension

RTJ



LD300S								
CONNECTION WITH EXTENSION	Dimensions in mm (")							
	Α	ØC	ØD	Е	ØF	ØG	EXT.	
Tri-Clamp DN50	8 (0.315)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	50.5 (1.99)	80 (3.15)	48 (1.89)	
Tri-Clamp DN50 HP	8 (0.315)	63.5 (2.5)	81 (3.19)	25 (0.98)	50.5 (1.99)	80 (3.15)	48 (1.89)	
Tri-Clamp - 2"	8 (0.315)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	50.5 (1.99)	80 (3.15)	48 (1.89)	
Tri-Clamp - 2" HP	8 (0.315)	63.5 (2.5)	81 (3.19)	25 (0.98)	50.5 (1.99)	80 (3.15)	48 (1.89)	
Tri-Clamp - 3"	8 (0.315)	91 (3.58)	110 (4.33)	18 (0.71)	72.5 (2.85)	100 (3.94)	50 (1.96)	
Tri-Clamp - 3" HP	8 (0.315)	91 (3.58)	115 (4.53)	25 (0.98)	72.5 (2.85)	100 (3.94)	50 (1.96)	
Threaded DN25 - DIN 11851	6 (0.24)	47.5 (1.87)	63 (2.48)	21 (0.83)	43.2 (1.7)	80 (3.15)	26.3 (1.03)	
Threaded DN40 - DIN 11851	8 (0.315)	56 (2.2)	78 (3.07)	21 (0.83)	50.5 (1.99)	80 (3.15)	48 (1.89)	
Threaded DN50 - DIN 11851	8 (0.315)	68.5 (2.7)	92 (3.62)	22 (0.86)	50.5 (1.99)	80 (3.15)	48 (1.89)	
Threaded DN80 - DIN 11851	8 (0.315)	100 (3.94)	127 (5)	29 (1.14)	72.5 (2.85)	100 (3.94)	50 (1.96)	
Threaded SMS - 2"	8 (0.315)	65 (2.56)	84 (3.3)	26 (1.02)	50.5 (1.99)	80 (3.15)	48 (1.89)	
Threaded SMS - 3"	8 (0.315)	93 (3.66)	113 (4.45)	32 (1.26)	72.5 (2.85)	100 (3.94)	50 (1.96)	
Threaded RJT - 2"	8 (0.315)	66.7 (2.63)	86 (3.38)	22 (0.86)	50.5 (1.99)	80 (3.15)	48 (1.89)	
Threaded RJT - 3"	8 (0.315)	92 (3.62)	112 (4.41)	22.2 (0.87)	72.5 (2.85)	100 (3.94)	50 (1.96)	
Threaded IDF - 2"	8 (0.315)	60.5 (2.38)	76.2 (3)	30 (1.18)	50.5 (1.99)	80 (3.15)	48 (1.89)	
Threaded IDF - 3"	8 (0.315)	87.5 (3.44)	101.6 (4)	30 (1.18)	72.5 (2.85)	100 (3.94)	50 (1.96)	

smar

LD300S - Sanitary Transmitter without Extension

LD300S								
CONNECTION WITHOUT	Dimensions in mm (")							
EXTENSION	А	ØC	ØD	E	ØF	ØG	EXT.	
Tri-Clamp DN50	8 (0.315)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	47.5 (1.87)			
Tri-Clamp - 1 1/2"	12 (0.47)	50 (1.96)	61 (2.4)	18 (0.71)	35 (1.38)			
Tri-Clamp - 1 1/2" HP	12 (0.47)	50 (1.96)	66 (2.59)	25 (0.98)	35 (1.38)			
Tri-Clamp - 2"	12 (0.47)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	47.6 (1.87)			
Tri-Clamp - 2" HP	12 (0.47)	63.5 (2.5)	81 (3.19)	25 (0.98)	47.6 (1.87)			
Tri-Clamp - 3"	12 (0.47)	91 (3.58)	110 (4.33)	18 (0.71)	72 (2.83)			
Tri-Clamp - 3" HP	12 (0.47)	91 (3.58)	115 (4.53)	25 (0.98)	72 (2.83)			
Threaded DN40 - DIN 11851	13 (0.51)	56 (2.2)	78 (3.07)	21 (0.83)	38 (1.5)			
Threaded DN50 - DIN 11851	15 (0.59)	68.5 (2.7)	92 (3.62)	22 (0.86)	50 (1.96)			
Threaded DN80 - DIN 11851	16 (0.63)	100 (3.94)	127 (5)	29 (1.14)	81 (3.19)			
Threaded SMS - 1 1/2"	12 (0.47)	55 (2.16)	74 (2.91)	25 (0.98)	35 (1.38)			
Threaded SMS - 2"	12 (0.47)	65 (2.56)	84 (3.3)	26 (1.02)	48.6 (1.91)			
Threaded SMS - 3"	12 (0.47)	93 (3.66)	113 (4.45)	32 (1.26)	73 (2.87)			
Threaded RJT - 2"	15 (0.59)	66.7 (2.63)	86 (3.38)	22 (0.86)	47.6 (1.87)		-	
Threaded RJT - 3"	15 (0.59)	92 (3.62)	112 (4.41)	22.2 (0.87)	73 (2.87)		-	
Threaded IDF - 2"	12 (0.47)	60.5 (2.38)	76 (2.99)	30 (1.18)	47.6 (1.87)		1	
Threaded IDF - 3"	12 (0.47)	87.5 (3.44)	101.6 (4)	30 (1.18)	73 (2.87)		-	

www.smar.com

Specifications and information are subject to change without notice. Up-to-date address information is available on our website.

web: www.smar.com/contactus.asp

